
Anomalien und Fehler im Produktionsprozess verursachen hohe Kosten und wirken sich negativ auf Nachhaltigkeit und Produktivität aus. Gelingt es, solche Fehler unmittelbar bei ihrem Auftreten zu erkennen, dann können kostenintensive Nacharbeiten, aufwendige Endprüfungen und Lieferverzögerungen vermieden werden. Das deutsch-tschechische Forschungsprojekt AIQUAMA (AI-based Quality Management for Smart Factories) untersucht den Einsatz…